

Features

- DC-1000 MHz usable bandwidth
- 4 dB typical insertion loss
- 4° phase balance
- 1 dB gain balance
- SMA connectors

Description

Actico is an 8 port active RF device for computing sums and differences of the input signals. It is designed for processing the differential outputs of horizontal and vertical bunch-

by-bunch feedback controllers. Actico generates appropriate drive signals for 4 diagonally located striplines. Closely matched responses of the individual channels the and wide bandwidth are optimized to maintain high bunch-to-bunch isolation.

Block Diagram

Actico is implemented using two wide-band differential amplifiers, as shown in the block diagram above. One of these amplifiers accepts X^+ and Y^+ signals and generates X-Y and Y-X drive outputs. The second amplifier converts X^- and Y^- into X+Y and -X-Y pair of outputs.

After high-power amplification, outputs

Actico is implemented using two wide- of Actico can be applied to the diagonal ad differential amplifiers, as shown in the striplines as shown in the figure below.

Actico

Electrical Specifications, $+25^{\circ}C$

Parameter	Frequency	Units	Min	Тур	Max
Insertion loss ¹	$DC-1.25~\mathrm{GHz}$	dB	_	7	10
Amplitude balance ¹²	$DC-1.25~\mathrm{GHz}$	dB	_	0.8	2
Phase balance ¹³	DC-1.25 GHz	degree		3	10
VSWR ⁴	DC-1.25 GHz	ratio	_	1.9	2
Upper 3 dB frequency ⁵		MHz	1000	1150	_
Plane isolation, X or Y drive ⁶		dB	30	38	_
Input voltage		mV	_	_	±500

 $^{^1 \}mathrm{For}$ two port measurements, six unused ports are terminated by 50Ω loads.

 $^{^2\}mathrm{Maximum}$ insertion loss difference over a block-diagonal $4{\times}4$ S-parameter matrix.

 $^{^3}$ Computed over a block-diagonal 4×4 S-parameter matrix after excluding individual input and output delay errors.

⁴For one port measurements (S_{11}) , seven unused ports are terminated by 50Ω loads.

⁵Relative to the DC gain

⁶See measurement approach description on page 4.

Case outline

Actico

Plane coupling test setup

S-parameters

Actico is characterized by measuring 16 S-parameters as follows:

- Two 2×2 forward transfer matrices between input and output ports;
- 8 reflection parameters (diagonal of the full scattering matrix);

Forward transfer matrices

Two separate 2×2 forward transfer matrices M^+ and M^- . Matrix M^+ is defined in Eq. 1, and matrix M^- — in Eq. 2. These are measured two ports at a time, with six unused ports terminated by Mini-Circuits ANNE-50L+ 50 Ω loads.

$$\begin{bmatrix} Y - X \\ X - Y \end{bmatrix} = M^+ \begin{bmatrix} X + \\ Y + \end{bmatrix} = \begin{bmatrix} S_{Y-X}^{X+} & S_{X-Y}^{X+} \\ S_{Y-X}^{Y+} & S_{X-Y}^{Y+} \end{bmatrix} \begin{bmatrix} X + \\ Y + \end{bmatrix}$$
(1)

$$\begin{bmatrix} -X - Y \\ X + Y \end{bmatrix} = M^{-} \begin{bmatrix} X - \\ Y - \end{bmatrix} = \begin{bmatrix} S_{-X-Y}^{X-} & S_{X+Y}^{X-} \\ S_{-X-Y}^{Y-} & S_{X+Y}^{Y-} \end{bmatrix} \begin{bmatrix} X - \\ Y - \end{bmatrix}$$
 (2)

In order to facilitate the analysis of this data, phase response measurements are processed as follows. For each element of the matrix, group delay is estimated by a linear fit to the phase data in the 0.3–1250 MHz range. Average delays for M^+ and M^- are subtracted. Maximum delay error between all 8 forward paths is calculated and reported in the factory test results. For the path-to-path phase error analysis phase values for the inverting paths in M_{fwd} are offset by 180°.

Calculated plane-to-plane coupling

From the S-parameter matrices it is possible to calculate the transfer functions for horizontal and vertical input signals to horizontal and vertical kicks (assuming perfectly balanced diagonal striplines and power amplifiers).

$$\begin{bmatrix} H_{xX} \\ H_{xY} \\ H_{yY} \\ H_{yX} \end{bmatrix} = \begin{bmatrix} S_{-X-Y}^{X-} + S_{X-Y}^{X+} - S_{Y-X}^{X+} - S_{X+Y}^{X-} \\ S_{-X-Y}^{X-} + S_{Y-X}^{X+} - S_{X-Y}^{X+} - S_{X+Y}^{X-} \\ S_{-X-Y}^{Y-} + S_{Y-X}^{Y+} - S_{X-Y}^{Y+} - S_{X+Y}^{Y-} \\ S_{-X-Y}^{Y-} + S_{Y-Y}^{Y+} - S_{Y-X}^{Y+} - S_{Y-X}^{Y-} \end{bmatrix}$$
(3)

where H_{xX} and H_{xY} are responses from the horizontal input to horizontal and vertical kicks respectively. Similarly, H_{yY} and H_{yX} are responses from the vertical input to vertical and horizontal kicks.

Typical performance curves

¹port delays removed

Actico

Typical performance curves (continued)

