Digital Signal Processing: An Introduction

Dmitry Teytelman

Dimtel, Inc., San Jose, CA, 95124, USA

June 16, 2009

Advantages and disadvantages

Summary

Outline

Introduction to DSP

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures

2 Real-time digital signal processing

- Definition and applications
- Available solutions

3 Advantages and disadvantages

- General-purpose Processors
- Special-purpose DSP chips
- Field Programmable Gate Arrays

< □ > < 同 > < 回 > < 回

Outline

Introduction to DSP

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays

Digital Signal Processing: Domains

- Digital signal processing involves three important mathematical processes:
 - Time quantization going from continuous to discrete time;
 - Amplitude quantization going from continuous to discrete signal amplitudes;
 - Digital to analog conversion going back to continuous time and amplitude.

Discrete Amplitude and Noise

- Conceptually, continuous amplitude signal can take any value.
- In practice, there is some minimal voltage step ΔV that we can resolve.
- Why is that?
- Signal is useful information V_c plus noise V_n .
- At increments comparable to noise RMS we can no longer distinguish signal values.
- Important point amplitude quantization has certain dynamic range, but input signal must have higher SNR.

Discrete Amplitude and Noise

- Conceptually, continuous amplitude signal can take any value.
- In practice, there is some minimal voltage step ΔV that we can resolve.
- Why is that?
- Signal is useful information V_c plus noise V_n .
- At increments comparable to noise RMS we can no longer distinguish signal values.
- Important point amplitude quantization has certain dynamic range, but input signal must have higher SNR.

Discrete Amplitude and Noise

- Conceptually, continuous amplitude signal can take any value.
- In practice, there is some minimal voltage step ΔV that we can resolve.
- Why is that?
- Signal is useful information V_c plus noise V_n .
- At increments comparable to noise RMS we can no longer distinguish signal values.
- Important point amplitude quantization has certain dynamic range, but input signal must have higher SNR.

Discrete Amplitude and Noise

- Conceptually, continuous amplitude signal can take any value.
- In practice, there is some minimal voltage step ΔV that we can resolve.
- Why is that?
- Signal is useful information V_c plus noise V_n.
- At increments comparable to noise RMS we can no longer distinguish signal values.
- Important point amplitude quantization has certain dynamic range, but input signal must have higher SNR.

Discrete Amplitude and Noise

- Conceptually, continuous amplitude signal can take any value.
- In practice, there is some minimal voltage step ΔV that we can resolve.
- Why is that?
- Signal is useful information V_c plus noise V_n.
- At increments comparable to noise RMS we can no longer distinguish signal values.
- Important point amplitude quantization has certain dynamic range, but input signal must have higher SNR.

Outline

Introduction to DSP

Defining the Terms

Sampling and Quantization

- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays

Time Sampling

Continuous to Discrete Time

$$V_n = V_c(nT_s)$$
$$V_s = V_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} V_n \delta(t - nT_s)$$

- Multiply the signal by a train of delta functions.
- Multiplication in time domain means convolution in frequency domain.
- Information is lost in this conversion.
- Sampling period T_s , sampling frequency $f_s = 1/T_s$.
- Nyquist frequency.

Time Sampling

Continuous to Discrete Time

$$V_n = V_c(nT_s)$$
$$V_s = V_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} V_n \delta(t - nT_s)$$

- Multiply the signal by a train of delta functions.
- Multiplication in time domain means convolution in frequency domain.
- Information is lost in this conversion.
- Sampling period T_s , sampling frequency $f_s = 1/T_s$.
- Nyquist frequency.

Time Sampling

Continuous to Discrete Time

$$V_n = V_c(nT_s)$$
$$V_s = V_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} V_n \delta(t - nT_s)$$

- Multiply the signal by a train of delta functions.
- Multiplication in time domain means convolution in frequency domain.
- Information is lost in this conversion.
- Sampling period T_s , sampling frequency $f_s = 1/T_s$.
- Nyquist frequency.

Time Sampling

Continuous to Discrete Time

$$V_n = V_c(nT_s)$$
$$V_s = V_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} V_n \delta(t - nT_s)$$

- Multiply the signal by a train of delta functions.
- Multiplication in time domain means convolution in frequency domain.
- Information is lost in this conversion.
- Sampling period T_s , sampling frequency $f_s = 1/T_s$.
- Nyquist frequency.

Amplitude Quantization

Quantizer Definition

The quantizer is a nonlinear system whose purpose is to transform the input sample V_n into one of a finite set of prescribed values (\hat{V}_n).

- Uniform quantization with step size Δ .
- Quantizing to a given number of bits N_b in the digital representation.
- $\Delta = 2X_m/2^{N_b} = X_m/2^{N_b-1}$ where X_m is the full-scale range of the quantizer.
- Example: in an 8-bit system there are 256 discrete levels. Signal quantization step is $X_m/128$.

Amplitude Quantization

Quantizer Definition

The quantizer is a nonlinear system whose purpose is to transform the input sample V_n into one of a finite set of prescribed values (\hat{V}_n).

- Uniform quantization with step size Δ .
- Quantizing to a given number of bits *N_b* in the digital representation.
- $\Delta = 2X_m/2^{N_b} = X_m/2^{N_b-1}$ where X_m is the full-scale range of the quantizer.
- Example: in an 8-bit system there are 256 discrete levels. Signal quantization step is $X_m/128$.

Amplitude Quantization

Quantizer Definition

The quantizer is a nonlinear system whose purpose is to transform the input sample V_n into one of a finite set of prescribed values (\hat{V}_n).

- Uniform quantization with step size Δ .
- Quantizing to a given number of bits *N_b* in the digital representation.
- $\Delta = 2X_m/2^{N_b} = X_m/2^{N_b-1}$ where X_m is the full-scale range of the quantizer.
- Example: in an 8-bit system there are 256 discrete levels. Signal quantization step is $X_m/128$.

Quantization Errors

• Consider error $e_n = \hat{V}_n - V_n$

- $-\Delta/2 < e_n \leq \Delta/2$
- Assumptions:
 - The error sequence *e_n* is a sample sequence of a stationary random process.
 - The error sequence is uncorrelated with the sequence V_n .
 - The error is a white-noise process.
 - The probability distribution of the error process is uniform over the range of quantization error.
- Then we get for variance of e_n : $\sigma_e^2 = \Delta^2/12$
- SNR of a quantizer in dB: $SNR = 6.02N_b + 4.78 - 20 \log_{10}(X_m/\sigma_N)$

Quantization Errors

• Consider error $e_n = \hat{V}_n - V_n$

• $-\Delta/2 < e_n \leq \Delta/2$

• Assumptions:

- The error sequence *e_n* is a sample sequence of a stationary random process.
- The error sequence is uncorrelated with the sequence V_n .
- The error is a white-noise process.
- The probability distribution of the error process is uniform over the range of quantization error.
- Then we get for variance of e_n : $\sigma_e^2 = \Delta^2/12$
- SNR of a quantizer in dB: $SNR = 6.02N_b + 4.78 - 20 \log_{10}(X_m/\sigma_V)$

Quantization Errors

- Consider error $e_n = \hat{V}_n V_n$
- $-\Delta/2 < e_n \leq \Delta/2$
- Assumptions:
 - The error sequence *e_n* is a sample sequence of a stationary random process.
 - The error sequence is uncorrelated with the sequence V_n.
 - The error is a white-noise process.
 - The probability distribution of the error process is uniform over the range of quantization error.
- Then we get for variance of e_n : $\sigma_e^2 = \Delta^2/12$
- SNR of a quantizer in dB:

 $SNR = 6.02N_b + 4.78 - 20\log_{10}(X_m/\sigma_V)$

Quantization Errors

- Consider error $e_n = \hat{V}_n V_n$
- $-\Delta/2 < e_n \leq \Delta/2$
- Assumptions:
 - The error sequence *e_n* is a sample sequence of a stationary random process.
 - The error sequence is uncorrelated with the sequence V_n.
 - The error is a white-noise process.
 - The probability distribution of the error process is uniform over the range of quantization error.
- Then we get for variance of e_n : $\sigma_e^2 = \Delta^2/12$
- SNR of a quantizer in dB:

 $SNR = 6.02N_b + 4.78 - 20\log_{10}(X_m/\sigma_V)$

Advantages and disadvantages

Digital to Analog Conversion

• Use samples to reconstruct continuous-time signal.

• Different ways to perform reconstruction:

- Hold sample value for each period (zero-order hold);
- Linearly interpolate between samples (first-order hold);
- Many other methods.
- Typically D/A converters use zero-order hold.
- Frequency response of a zero-order hold is $H_0(j\omega) = \frac{2sin(\omega T_s/2)}{\omega T_s} e^{-i\omega T_s/2}$

Digital to Analog Conversion

- Use samples to reconstruct continuous-time signal.
- Different ways to perform reconstruction:
 - Hold sample value for each period (zero-order hold);
 - Linearly interpolate between samples (first-order hold);
 - Many other methods.
- Typically D/A converters use zero-order hold.
- Frequency response of a zero-order hold is $H_0(j\omega) = \frac{2sin(\omega T_s/2)}{\omega T_s} e^{-i\omega T_s/2}$

Digital to Analog Conversion

- Use samples to reconstruct continuous-time signal.
- Different ways to perform reconstruction:
 - Hold sample value for each period (zero-order hold);
 - Linearly interpolate between samples (first-order hold);
 - Many other methods.
- Typically D/A converters use zero-order hold.
- Frequency response of a zero-order hold is $H_0(j\omega) = \frac{2sin(\omega T_s/2)}{\omega T_s} e^{-i\omega T_s/2}$

Outline

Introduction to DSP

- Defining the Terms
- Sampling and Quantization

Z-transform

- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays

Z-transform

Z-transform Definition

Z-transform of sequence x_n is defined as $X(z) = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

- Discrete-time Fourier transform of sequence x_n is $X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} x_n e^{-i\omega n}$
- Similar to Laplace and Fourier transforms in continuous time we have z-transform and discrete-time Fourier transform.
- Delay operator z^{-1} : $x_{n-1} = x_n z^{-1}$

Z-transform

Z-transform Definition

Z-transform of sequence x_n is defined as $X(z) = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

- Discrete-time Fourier transform of sequence x_n is $X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} x_n e^{-i\omega n}$
- Similar to Laplace and Fourier transforms in continuous time we have z-transform and discrete-time Fourier transform.
- Delay operator z^{-1} : $x_{n-1} = x_n z^{-1}$

Z-transform

Z-transform Definition

Z-transform of sequence x_n is defined as $X(z) = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

- Discrete-time Fourier transform of sequence x_n is $X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} x_n e^{-i\omega n}$
- Similar to Laplace and Fourier transforms in continuous time we have z-transform and discrete-time Fourier transform.
- Delay operator z^{-1} : $x_{n-1} = x_n z^{-1}$

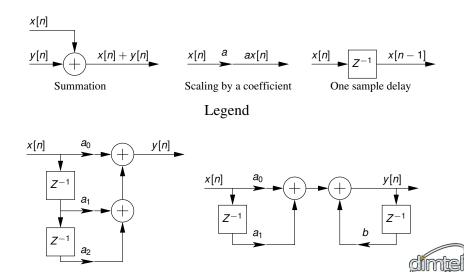
Outline

Introduction to DSP

- Defining the Terms
- Sampling and Quantization
- Z-transform

Digital Filtering

- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays



Advantages and disadvantages

(日)

Summary

Digital Filtering Basics

Two Classes of Filters

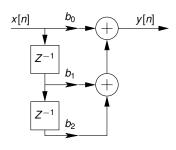
• All linear time-invariant digital filters can be split into two classes:

- Finite Impulse Response (FIR): filter output depends only on a finite number of past input samples;
- Infinite Impulse Response (IIR): filter has internal memory, output theoretically persists to infinity.
- Internal memory feedback.
- Feedback can be unstable IIR filter designer has to worry about stability.
- FIR filters are unconditionally stable.

Two Classes of Filters

- All linear time-invariant digital filters can be split into two classes:
 - Finite Impulse Response (FIR): filter output depends only on a finite number of past input samples;
 - Infinite Impulse Response (IIR): filter has internal memory, output theoretically persists to infinity.
- Internal memory feedback.
- Feedback can be unstable IIR filter designer has to worry about stability.
- FIR filters are unconditionally stable.

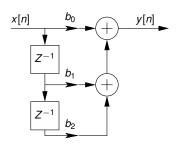
Two Classes of Filters


- All linear time-invariant digital filters can be split into two classes:
 - Finite Impulse Response (FIR): filter output depends only on a finite number of past input samples;
 - Infinite Impulse Response (IIR): filter has internal memory, output theoretically persists to infinity.
- Internal memory feedback.
- Feedback can be unstable IIR filter designer has to worry about stability.
- FIR filters are unconditionally stable.

Advantages and disadvantages

Summary

FIR Filter

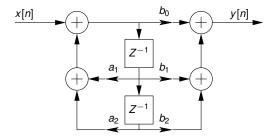

- Response of an FIR: $y[n] = \sum_{i=0}^{N-1} b_i x[N-1-i]$
- Each term in the sum is called "tap".
- *N*-tap filter requires *N* multiplies and *N* adds.
- Z-transform of FIR response: $H(z) = \sum_{i=0}^{N-1} b_i z^{-i}$

Advantages and disadvantages

Summary

FIR Filter

- Response of an FIR: $y[n] = \sum_{i=0}^{N-1} b_i x[N-1-i]$
- Each term in the sum is called "tap".
- *N*-tap filter requires *N* multiplies and *N* adds.
- Z-transform of FIR response:


 $H(z) = \sum_{i=0}^{N-1} b_i z^{-i}$

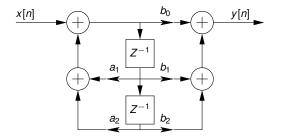
Advantages and disadvantages

Summary

IIR Filter: Biquad Structure

Direct Form II realization

Second-order transfer function

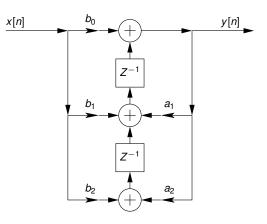

•
$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$$

Advantages and disadvantages

Summary

IIR Filter: Biquad Structure

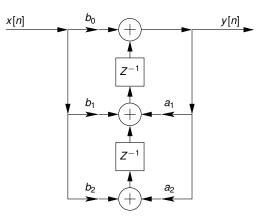
- Direct Form II realization
- Second-order transfer function


•
$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$$

Advantages and disadvantages

Summary

IIR Filter: Transposed


- Transposed Direct Form II realization
- $H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$

Advantages and disadvantages

Summary

IIR Filter: Transposed

• Transposed Direct Form II realization • $H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$

Advantages and disadvantages

IIR Filter Stability

- Z-domain transfer function is stable if the poles (roots of the denominator polynomial) are within a unit circle.
- |p| < 1</p>
- Critically stable for |p| = 1.
- Integrator is critically stable: $y_n = y_{n-1} + x_n$.

Advantages and disadvantages

IIR Filter Stability

- Z-domain transfer function is stable if the poles (roots of the denominator polynomial) are within a unit circle.
- |*p*| < 1
- Critically stable for |p| = 1.
- Integrator is critically stable: $y_n = y_{n-1} + x_n$.

IIR Filter Stability

- Z-domain transfer function is stable if the poles (roots of the denominator polynomial) are within a unit circle.
- *|p*| < 1
- Critically stable for |p| = 1.
- Integrator is critically stable: $y_n = y_{n-1} + x_n$.

Advantages and disadvantages

Outline

Introduction to DSP

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays

Good Filters

• Structures for efficient filter implementation:

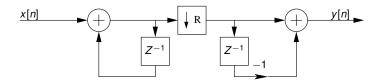
- Resource usage no multiplies;
- Resource usage many zero coefficients;
- Resource usage symmetric structures;
- Improving quantization effects.
- A few examples
- Cascaded Integrator Comb (CIC)
- Half-band filters
- Lattice structures

- Structures for efficient filter implementation:
 - Resource usage no multiplies;
 - Resource usage many zero coefficients;
 - Resource usage symmetric structures;
 - Improving quantization effects.
- A few examples
- Cascaded Integrator Comb (CIC)
- Half-band filters
- Lattice structures

- Structures for efficient filter implementation:
 - Resource usage no multiplies;
 - Resource usage many zero coefficients;
 - Resource usage symmetric structures;
 - Improving quantization effects.
- A few examples
- Cascaded Integrator Comb (CIC)
- Half-band filters
- Lattice structures

- Structures for efficient filter implementation:
 - Resource usage no multiplies;
 - Resource usage many zero coefficients;
 - Resource usage symmetric structures;
 - Improving quantization effects.
- A few examples
- Cascaded Integrator Comb (CIC)
- Half-band filters
- Lattice structures

- Structures for efficient filter implementation:
 - Resource usage no multiplies;
 - Resource usage many zero coefficients;
 - Resource usage symmetric structures;
 - Improving quantization effects.
- A few examples
- Cascaded Integrator Comb (CIC)
- Half-band filters
- Lattice structures



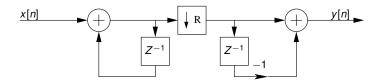
Advantages and disadvantages

(日)

Summary

Cascaded Integrator Comb

• Sampling rate reduced by R.


•
$$y_n = \sum_{i=0}^{R-1} x[n-i]$$

• What about integrator overflow?

Advantages and disadvantages

Summary

Cascaded Integrator Comb

• Sampling rate reduced by R.

•
$$y_n = \sum_{i=0}^{R-1} x[n-i]$$

• What about integrator overflow?

Advantages and disadvantages

Summary

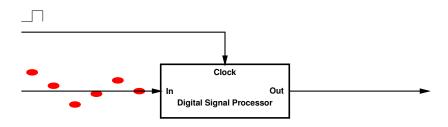
Outline

Introduction to DSF

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures

2 Real-time digital signal processing

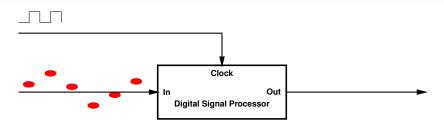
- Definition and applications
- Available solutions


3 Advantages and disadvantages

- General-purpose Processors
- Special-purpose DSP chips
- Field Programmable Gate Arrays

Summary

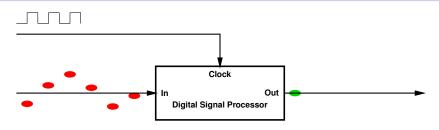
Real-time Signal Processing Definition



- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Summary

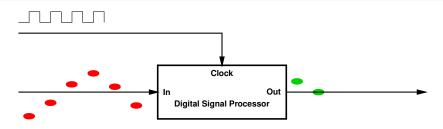
Real-time Signal Processing Definition



- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Summary

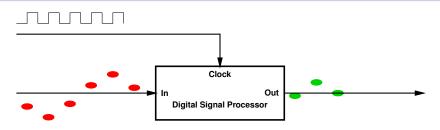
Real-time Signal Processing Definition



- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Summary

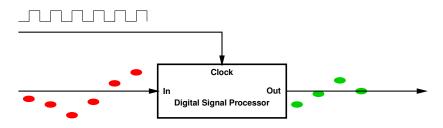
Real-time Signal Processing Definition



- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Summary

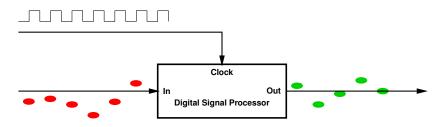
Real-time Signal Processing Definition


- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Advantages and disadvantages

Summary

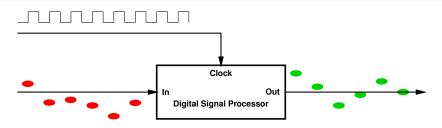
Real-time Signal Processing Definition


- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Advantages and disadvantages

Summary

Real-time Signal Processing Definition


- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Advantages and disadvantages

Summary

Real-time Signal Processing Definition

- Continuous input stream of samples.
- Output (processed) samples generated every clock cycle.
- Fixed delay (latency) between input and output.
- Sampling clock defines available per-sample processing time.
- System defining elements: sampling rate, latency, algorithm complexity.

Accelerator Applications

- Low-level RF;
- Orbit feedback;
- Collision point feedback;
- Coupled-bunch instabilities control;
- BPMs
- There are also non real-time needs:
 - Off-line diagnostics ...
 - ... and configuration
 - These are often easier to satisfy with the off-the-shelf hardware.

Accelerator Applications

- Low-level RF;
- Orbit feedback;
- Collision point feedback;
- Coupled-bunch instabilities control;
- BPMs
- There are also non real-time needs:
 - Off-line diagnostics . . .
 - ... and configuration
 - These are often easier to satisfy with the off-the-shelf hardware.

Accelerator Applications

- Low-level RF;
- Orbit feedback;
- Collision point feedback;
- Coupled-bunch instabilities control;
- BPMs
- There are also non real-time needs:
 - Off-line diagnostics . . .
 - ...and configuration
 - These are often easier to satisfy with the off-the-shelf hardware.

Accelerator Applications

- Low-level RF;
- Orbit feedback;
- Collision point feedback;
- Coupled-bunch instabilities control;
- BPMs
- There are also non real-time needs:
 - Off-line diagnostics . . .
 - ...and configuration
 - These are often easier to satisfy with the off-the-shelf hardware.

Advantages and disadvantages

Outline

Introduction to DSF

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures

2 Real-time digital signal processing

- Definition and applications
- Available solutions
- 3 Advantages and disadvantages
 - General-purpose Processors
 - Special-purpose DSP chips
 - Field Programmable Gate Arrays

Real-time Signal Processing Solutions: Sampling Rate

- Sampling rates of interest from 100 kHz to 1000+ MHz.
- Options range from general-purpose CPUs to dedicated hardware.
- Special-purpose DSP chips fall somewhere in the middle.
- Are DSPs really faster than GP CPUs?

(日)

• Dedicated hardware solutions have mostly converged on FPGA devices.

Real-time Signal Processing Solutions: Sampling Rate

- Sampling rates of interest from 100 kHz to 1000+ MHz.
- Options range from general-purpose CPUs to dedicated hardware.
- Special-purpose DSP chips fall somewhere in the middle.
- Are DSPs really faster than GP CPUs?
- Dedicated hardware solutions have completely converged on FPGA devices.

Real-time Signal Processing Solutions: Latency

- Finishing order quite similar to the previous slide.
- For latency DSPs do have an edge on the general-purpose CPUs.

Three Choices

• General-purpose processors:

- Basically a plain-vanilla Intel-architecture PC.
- Instruction rates in the multi-GHz range.
- Hierarchical memory structure complicates algorithm timing.
- Special-purpose DSPs.
 - Off-the-shelf or custom design.
 - Slower clocks than GP CPUs.
 - Multiple execution units.
 - Architectural features for real-time processing.
- FPGAs
 - Most likely custom design, some off-the-shelf availability.
 - Highly parallel.
 - Sample processing rates into hundreds of MHz.

Three Choices

- General-purpose processors:
 - Basically a plain-vanilla Intel-architecture PC.
 - Instruction rates in the multi-GHz range.
 - Hierarchical memory structure complicates algorithm timing.
- Special-purpose DSPs.
 - Off-the-shelf or custom design.
 - Slower clocks than GP CPUs.
 - Multiple execution units.
 - Architectural features for real-time processing.
- FPGAs
 - Most likely custom design, some off-the-shelf availability.
 - Highly parallel.
 - Sample processing rates into hundreds of MHz.

Three Choices

- General-purpose processors:
 - Basically a plain-vanilla Intel-architecture PC.
 - Instruction rates in the multi-GHz range.
 - Hierarchical memory structure complicates algorithm timing.
- Special-purpose DSPs.
 - Off-the-shelf or custom design.
 - Slower clocks than GP CPUs.
 - Multiple execution units.
 - Architectural features for real-time processing.
- FPGAs
 - Most likely custom design, some off-the-shelf availability.
 - Highly parallel.
 - Sample processing rates into hundreds of MHz.

Advantages and disadvantages

Summary

Outline

Introduction to DSF

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions

3 Advantages and disadvantages

- General-purpose Processors
- Special-purpose DSP chips
- Field Programmable Gate Arrays

Summary

General-purpose CPUs: advantages

- Low cost per MIPS.
- Wide variety of development tools/environments.
- Easy to prototype and test algorithms.
- Intel/AMD CPUs have DSP extensions:
 - MMX, MMX2, SSE, SSE2, ...

Summary

General-purpose CPUs: disadvantages

- Real-time support issues.
- Input and output.
 - Real-time streaming I/O needs thought.
- Integration:
 - Startup and booting.
 - Power interruption handling.
 - Software maintenance.

Advantages and disadvantages

Summary

Outline

Introduction to DSF

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions

3 Advantages and disadvantages

- General-purpose Processors
- Special-purpose DSP chips
- Field Programmable Gate Arrays

Summary

DSPs: advantages and disadvantages.

Advantages.

- Geared for real-time processing.
- Special instructions for filtering, Fourier transforms.

Disadvantages.

- General-purpose CPUs include DSP engines
- It is doubtful that DSPs have any speed edge at this time

Summary

DSPs: advantages and disadvantages.

Advantages.

- Geared for real-time processing.
- Special instructions for filtering, Fourier transforms.

Disadvantages.

- General-purpose CPUs include DSP engines
- It is doubtful that DSPs have any speed edge at this time

Advantages and disadvantages

Summary

Outline

Introduction to DSF

- Defining the Terms
- Sampling and Quantization
- Z-transform
- Digital Filtering
- Efficient Filter Structures
- 2 Real-time digital signal processing
 - Definition and applications
 - Available solutions

3 Advantages and disadvantages

- General-purpose Processors
- Special-purpose DSP chips
- Field Programmable Gate Arrays

(日)

(日)

FPGAs: Pros and Cons

Pros:

- Natural for synchronous real-time processing
- Parallel structures provide significant speed gain
 - Each clock cycle multiple processing units execute simultaneously
 - Example: 64-tap FIR at 100 MHz
 - Equivalent to 6.4 GHz instruction rate on a single execution unit.
- Can use soft CPUs or on-chip cores for housekeeping, startup sequences, adaptation.

- Custom design likely required.
- FPGAs are better suited to relatively simple processing structures.

(日)

FPGAs: Pros and Cons

Pros:

- Natural for synchronous real-time processing
- Parallel structures provide significant speed gain
 - Each clock cycle multiple processing units execute simultaneously
 - Example: 64-tap FIR at 100 MHz
 - Equivalent to 6.4 GHz instruction rate on a single execution unit.
- Can use soft CPUs or on-chip cores for housekeeping, startup sequences, adaptation.

- Custom design likely required.
- FPGAs are better suited to relatively simple processing structures.

FPGAs: Pros and Cons

Pros:

- Natural for synchronous real-time processing
- Parallel structures provide significant speed gain
 - Each clock cycle multiple processing units execute simultaneously
 - Example: 64-tap FIR at 100 MHz
 - Equivalent to 6.4 GHz instruction rate on a single execution unit.
- Can use soft CPUs or on-chip cores for housekeeping, startup sequences, adaptation.

- Custom design likely required.
- FPGAs are better suited to relatively simple processing structures.

(日)

FPGAs: Pros and Cons

Pros:

- Natural for synchronous real-time processing
- Parallel structures provide significant speed gain
 - Each clock cycle multiple processing units execute simultaneously
 - Example: 64-tap FIR at 100 MHz
 - Equivalent to 6.4 GHz instruction rate on a single execution unit.
- Can use soft CPUs or on-chip cores for housekeeping, startup sequences, adaptation.

- Custom design likely required.
- FPGAs are better suited to relatively simple processing structures.

A Possible Design Philosophy

- Design resources are pretty much always limited.
- Pragmatically look for minimalistic solutions ...
- ... without sacrificing functionality.
- Optimal solution strongly depends on the skills available.
 - Custom hardware with minimal software for UI and diagnostics.
 - Off-the-shelf DSP system with soft processing.
- Technology choice is not necessarily driven by the technical merits.

A Possible Design Philosophy

- Design resources are pretty much always limited.
- Pragmatically look for minimalistic solutions ...
- ... without sacrificing functionality.
- Optimal solution strongly depends on the skills available.
 - Custom hardware with minimal software for UI and diagnostics.
 - Off-the-shelf DSP system with soft processing.
- Technology choice is not necessarily driven by the technical merits.

A Possible Design Philosophy

- Design resources are pretty much always limited.
- Pragmatically look for minimalistic solutions ...
- ... without sacrificing functionality.
- Optimal solution strongly depends on the skills available.
 - Custom hardware with minimal software for UI and diagnostics.
 - Off-the-shelf DSP system with soft processing.
- Technology choice is not necessarily driven by the technical merits.

Advantages and disadvantages

Summary

• Introduction to DSP: sampling, noise, filtering.

- Some hardware/software implementation ideas.
- You really learn by implementing the structures!!!

Advantages and disadvantages

Summary

- Introduction to DSP: sampling, noise, filtering.
- Some hardware/software implementation ideas.
- You really learn by implementing the structures!!!

Advantages and disadvantages

Summary

- Introduction to DSP: sampling, noise, filtering.
- Some hardware/software implementation ideas.
- You really learn by implementing the structures!!!

