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Digital Signal Processing: Domains

@ Digital signal processing involves three important
mathematical processes:

e Time quantization — going from continuous to discrete
time;

e Amplitude quantization — going from continuous to discrete
signal amplitudes;

e Digital to analog conversion — going back to continuous
time and amplitude.
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Discrete Amplitude and Noise

@ Conceptually, continuous amplitude signal can take any
value.

@ In practice, there is some minimal voltage step AV that we
can resolve.

@ Why is that?
@ Signal is useful information V; plus noise V.

@ At increments comparable to noise RMS we can no longer
distinguish signal values.

@ Important point - amplitude quantization has certain
dynamic range, but input signal must have higher SNR.



Introduction to DSP
00000

Outline

@ Introduction to DSP

@ Sampling and Quantization

(



Introduction to DSP
(o] Jelele]

Time Sampling
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@ Multiply the signal by a train of delta functions.
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Time Sampling

Continuous to Discrete Time
Vn = Vc(nTs)
Vs=Ve(t) > o(t—nTy)= > Vupd(t—nTy)

n=—oo n=—oo

@ Multiply the signal by a train of delta functions.

@ Multiplication in time domain means convolution in
frequency domain.

@ Information is lost in this conversion.
@ Sampling period T, sampling frequency f, = 1/Ts.
@ Nyquist frequency.
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Amplitude Quantization

Quantizer Definition

The quantizer is a nonlinear system whose purpose is to
transform the input sample V,, into one of a finite set of
prescribed values (V).

@ Uniform quantization with step size A.

@ Quantizing to a given number of bits N, in the digital
representation.

@ A =2Xy/2M = X,,/2M~1 where X, is the full-scale range
of the quantizer.

@ Example: in an 8-bit system there are 256 discrete levels.

Signal quantization step is X/128. 7 )
" el
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Quantization Errors

@ Consider error e, = V,, — V,
@ —A/2<e,<A/2
@ Assumptions:

e The error sequence e, is a sample sequence of a
stationary random process.

e The error sequence is uncorrelated with the sequence V,,.

e The error is a white-noise process.

e The probability distribution of the error process is uniform
over the range of quantization error.

@ Then we get for variance of e,: 02 = A2/12

@ SNR of a quantizer in dB:
SNR = 6.02Nj, + 4.78 — 20 l0go(Xm/ov)
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Digital to Analog Conversion

@ Use samples to reconstruct continuous-time signal.
@ Different ways to perform reconstruction:

e Hold sample value for each period (zero-order hold);
e Linearly interpolate between samples (first-order hold);
e Many other methods.

@ Typically D/A converters use zero-order hold.

@ Frequency response of a zero-order hold is
Ho(jaJ) _ Zsm((dwTZS/Z) e wTs/2
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Z-transform

Z-transform Definition
Z-transform of sequence x, is defined as
X(Z) = Z;I.ifoo anin

@ Discrete-time Fourier transform of sequence x, is
iwy _ 00 —iwn
X(e™) =2 nt_o Xne "™
@ Similar to Laplace and Fourier transforms in continuous
time we have z-transform and discrete-time Fourier
transform.

@ Delay operator z=': x,_1 = xpz~!
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Digital Filtering Basics

x[n]
yln] x[n] + yIn] x[n] & axn| x[nl | xIn-1]
—_———— —» 7
Summation Scaling by a coefficient One sample delay
Legend
x[n] & yIn]
Z—1
a
I
Y
zZ-1

ao ‘—]
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Two Classes of Filters

@ All linear time-invariant digital filters can be split into two
classes:

e Finite Impulse Response (FIR): filter output depends only
on a finite number of past input samples;

o Infinite Impulse Response (lIR): filter has internal memory,
output theoretically persists to infinity.

@ Internal memory — feedback.

@ Feedback can be unstable — IIR filter designer has to
worry about stability.

@ FIR filters are unconditionally stable.
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@ Response of an FIR:
ylnl = 55 bix[N —1 ]
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FIR Filter

@ Response of an FIR:
yln) = S5 bix[N =1 -]
@ Each term in the sum is called "tap".

@ N-tap filter requires N multiplies and
N adds.

@ Z-transform of FIR response:
H(z) = Yo' biz™
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lIR Filter: Biquad Structure

@ Direct Form Il realization
@ Second-order transfer function
—1 —2 2
° H(Z) _ bo+biz7'+boz _ bgzc+biz+bo

T Ataiz +az 2 Z2tazta A _ﬁ/
igghe
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lIR Filter: Transposed

x[r] bo 9 yln)

@ Transposed Direct Form Il realization _.
l ipy) =l
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lIR Filter: Transposed

x[n] bo 9 yIn]
—_— ——
Z—1
b a
y 1{ Y
Z—1
bo i ap
————
@ Transposed Direct Form Il realization _.
o H(z) = bo+b1z ' +boz2 _ byz2+biz+bo fJfﬁﬁJr %ﬁ/
T A4aiz +az2 T Ziajzta
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@ Z-domain transfer function is stable if the poles (roots of
the denominator polynomial) are within a unit circle.
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lIR Filter Stability

@ Z-domain transfer function is stable if the poles (roots of
the denominator polynomial) are within a unit circle.

° [p| <1
@ Critically stable for |p| = 1.
@ Integrator is critically stable: y, = yn_1 + Xp.
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Good Filters

@ Structures for efficient filter implementation:

e Resource usage — no multiplies;

e Resource usage — many zero coefficients;
e Resource usage — symmetric structures;
e Improving quantization effects.

@ A few examples

@ Cascaded Integrator Comb (CIC)
@ Half-band filters

@ Lattice structures

(
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Cascaded Integrator Comb

@ Sampling rate reduced by R.

® yn=>1% XIn— 1]
@ What about integrator overflow?
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e Real-time digital signal processing
@ Definition and applications
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Real-time Signal Processing Definition

g Clock

) &1 In Out
Y Digital Signal Processor

\J

@ Continuous input stream of samples.
@ Output (processed) samples generated every clock cycle.
@ Fixed delay (latency) between input and output.

@ Sampling clock defines available per-sample processing
time.

@ System defining elements: sampling rate, latency,
algorithm complexity.
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[ _J Clock
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In Out = D
Y g Digital Signal Processor

@ Continuous input stream of samples.
@ Output (processed) samples generated every clock cycle.
@ Fixed delay (latency) between input and output.

@ Sampling clock defines available per-sample processing
time.

@ System defining elements: sampling rate, latency,
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Real-time Signal Processing Definition

[ _J Clock

In Out ——agp———=— >
Digital Signal Processor )

@ Continuous input stream of samples.
@ Output (processed) samples generated every clock cycle.
@ Fixed delay (latency) between input and output.

@ Sampling clock defines available per-sample processing
time.

@ System defining elements: sampling rate, latency,
algorithm complexity.
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Real-time Signal Processing Definition

Clock

In out ————=—>
e ® Y [ Digital Signal Processor )

@ Continuous input stream of samples.
@ Output (processed) samples generated every clock cycle.
@ Fixed delay (latency) between input and output.

@ Sampling clock defines available per-sample processing
time.

@ System defining elements: sampling rate, latency,
algorithm complexity.
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Real-time Signal Processing Definition

Clock [ _J

In Out ] =
[ _J Y [ J Digital Signal Processor )

@ Continuous input stream of samples.
@ Output (processed) samples generated every clock cycle.
@ Fixed delay (latency) between input and output.

@ Sampling clock defines available per-sample processing
time.

@ System defining elements: sampling rate, latency,
algorithm complexity.
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Coupled-bunch instabilities control;
BPMs
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Accelerator Applications

@ Real-time signal processing.
Low-level RF;
Orbit feedback;
Collision point feedback;
Coupled-bunch instabilities control;
e BPMs
@ There are also non real-time needs:
e Off-line diagnostics ...
e ...and configuration
e These are often easier to satisfy with the off-the-shelf
hardware.
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e Real-time digital signal processing

@ Available solutions
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Real-time Signal Processing Solutions: Sampling Rate

Sampling rate

GP CPU @ Sampling rates of interest from 100 kHz
— 1 MHz to 1000+ MHz.
@ Options range from general-purpose
CPUs to dedicated hardware.

- 10MHz 5 Special-purpose DSP chips fall
somewhere in the middle.
@ Are DSPs really faster than GP CPUs?

¥ - 100 MHz
: @ Dedicated hardware solutions have

mostly converged on FPGA devices.
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Real-time Signal Processing Solutions: Sampling Rate

Sampling rate

GP CPU @ Sampling rates of interest from 100 kHz
— 1 MHz to 1000+ MHz.
@ Options range from general-purpose
CPUs to dedicated hardware.

- 10MHz 5 Special-purpose DSP chips fall
somewhere in the middle.
@ Are DSPs really faster than GP CPUs?

¥ - 100 MHz
: @ Dedicated hardware solutions have

completely converged on FPGA devices.
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Real-time Signal Processing Solutions: Latency

Latency
GP CPU

— 10 us

@ Finishing order quite similar to the
L 1 us previous slide.

@ For latency DSPs do have an edge on the
general-purpose CPUs.

— 100 ns
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@ General-purpose processors:
e Basically a plain-vanilla Intel-architecture PC.
@ Instruction rates in the multi-GHz range.
e Hierarchical memory structure complicates algorithm
timing.
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Three Choices

@ General-purpose processors:
e Basically a plain-vanilla Intel-architecture PC.
@ Instruction rates in the multi-GHz range.
e Hierarchical memory structure complicates algorithm
timing.
@ Special-purpose DSPs.
o Off-the-shelf or custom design.
o Slower clocks than GP CPUs.
e Multiple execution units.
e Architectural features for real-time processing.

@ FPGAs
e Most likely custom design, some off-the-shelf availability.

e Highly parallel.
e Sample processing rates into hundreds of MHz.
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General-purpose CPUs: advantages

@ Low cost per MIPS.
@ Wide variety of development tools/environments.

@ Easy to prototype and test algorithms.
@ Intel/AMD CPUs have DSP extensions:
o MMX, MMX2, SSE, SSE2, ...



Advantages and disadvantages
ooe

General-purpose CPUs: disadvantages

@ Real-time support issues.
@ Input and output.

e Real-time streaming 1/O needs thought.
@ Integration:

e Startup and booting.
e Power interruption handling.
e Software maintenance.
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@ Special-purpose DSP chips
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Advantages.
@ Geared for real-time processing.
@ Special instructions for filtering, Fourier transforms.
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DSPs: advantages and disadvantages.

Advantages.

@ Geared for real-time processing.

@ Special instructions for filtering, Fourier transforms.
Disadvantages.

@ General-purpose CPUs include DSP engines

@ It is doubtful that DSPs have any speed edge at this time
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Q Advantages and disadvantages

@ Field Programmable Gate Arrays Gliingt %ﬁ/
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@ Parallel structures provide significant speed gain

e Each clock cycle multiple processing units execute
simultaneously
e Example: 64-tap FIR at 100 MHz
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FPGAs: Pros and Cons

Pros:

@ Natural for synchronous real-time processing
@ Parallel structures provide significant speed gain
e Each clock cycle multiple processing units execute
simultaneously
e Example: 64-tap FIR at 100 MHz
e Equivalent to 6.4 GHz instruction rate on a single execution
unit.
@ Can use soft CPUs or on-chip cores for housekeeping,
startup sequences, adaptation.

Cons:
@ Custom design likely required.

@ FPGAs are better suited to relatively simple processing =~ )
structures. l ipy) off
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A Possible Design Philosophy

@ Design resources are pretty much always limited.
@ Pragmatically look for minimalistic solutions ...
@ ... without sacrificing functionality.

@ Optimal solution strongly depends on the skills available.
e Custom hardware with minimal software for Ul and
diagnostics.
o Off-the-shelf DSP system with soft processing.
@ Technology choice is not necessarily driven by the
technical merits.
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Summary

@ Introduction to DSP: sampling, noise, filtering.
@ Some hardware/software implementation ideas.
@ You really learn by implementing the structures!!!
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